Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(679): eabq6288, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652537

RESUMO

Deregulated de novo lipid synthesis (DNLS) is a potential druggable vulnerability in glioblastoma (GBM), a highly lethal and incurable cancer. Yet the molecular mechanisms that determine susceptibility to DNLS-targeted therapies remain unknown, and the lack of brain-penetrant inhibitors of DNLS has prevented their clinical evaluation as GBM therapeutics. Here, we report that YTX-7739, a clinical-stage inhibitor of stearoyl CoA desaturase (SCD), triggers lipotoxicity in patient-derived GBM stem-like cells (GSCs) and inhibits fatty acid desaturation in GSCs orthotopically implanted in mice. When administered as a single agent, or in combination with temozolomide (TMZ), YTX-7739 showed therapeutic efficacy in orthotopic GSC mouse models owing to its lipotoxicity and ability to impair DNA damage repair. Leveraging genetic, pharmacological, and physiological manipulation of key signaling nodes in gliomagenesis complemented with shotgun lipidomics, we show that aberrant MEK/ERK signaling and its repression of the energy sensor AMP-activated protein kinase (AMPK) primarily drive therapeutic vulnerability to SCD and other DNLS inhibitors. Conversely, AMPK activation mitigates lipotoxicity and renders GSCs resistant to the loss of DNLS, both in culture and in vivo, by decreasing the saturation state of phospholipids and diverting toxic lipids into lipid droplets. Together, our findings reveal mechanisms of metabolic plasticity in GSCs and provide a framework for the rational integration of DNLS-targeted GBM therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Glioblastoma/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Dano ao DNA , Lipídeos , Células-Tronco Neoplásicas/metabolismo
3.
Neurotherapeutics ; 19(3): 1018-1036, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35445353

RESUMO

Increasing evidence has shown that Parkinson's disease (PD) impairs midbrain dopaminergic, cortical and other neuronal subtypes in large part due to the build-up of lipid- and vesicle-rich α-synuclein (αSyn) cytotoxic inclusions. We previously identified stearoyl-CoA desaturase (SCD) as a potential therapeutic target for synucleinopathies. A brain-penetrant SCD inhibitor, YTX-7739, was developed and has entered Phase 1 clinical trials. Here, we report the efficacy of YTX-7739 in reversing pathological αSyn phenotypes in various in vitro and in vivo PD models. In cell-based assays, YTX-7739 decreased αSyn-mediated neuronal death, reversed the abnormal membrane interaction of amplified E46K ("3K") αSyn, and prevented pathological phenotypes in A53T and αSyn triplication patient-derived neurospheres, including dysregulated fatty acid profiles and pS129 αSyn accumulation. In 3K PD-like mice, YTX-7739 crossed the blood-brain barrier, decreased unsaturated fatty acids, and prevented progressive motor deficits. Both YTX-7739 treatment and decreasing SCD activity through deletion of one copy of the SCD1 gene (SKO) restored the physiological αSyn tetramer-to-monomer ratio, dopaminergic integrity, and neuronal survival in 3K αSyn mice. YTX-7739 efficiently reduced pS129 + and PK-resistant αSyn in both human wild-type αSyn and 3K mutant mice similar to the level of 3K-SKO. Together, these data provide further validation of SCD as a PD therapeutic target and YTX-7739 as a clinical candidate for treating human α-synucleinopathies.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Encéfalo/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Doença de Parkinson/genética , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
4.
Mol Neurobiol ; 59(4): 2171-2189, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35060064

RESUMO

Stearoyl-CoA desaturase (SCD) is a potential therapeutic target for Parkinson's and related neurodegenerative diseases. SCD inhibition ameliorates neuronal toxicity caused by aberrant α-synuclein, a lipid-binding protein implicated in Parkinson's disease. Its inhibition depletes monounsaturated fatty acids, which may modulate α-synuclein conformations and membrane interactions. Herein, we characterize the pharmacokinetic and pharmacodynamic properties of YTX-7739, a clinical-stage SCD inhibitor. Administration of YTX-7739 to rats and monkeys for 15 days caused a dose-dependent increase in YTX-7739 concentrations that were well-tolerated and associated with concentration-dependent reductions in the fatty acid desaturation index (FADI), the ratio of monounsaturated to saturated fatty acids. An approximate 50% maximal reduction in the carbon-16 desaturation index was observed in the brain, with comparable responses in the plasma and skin. A study with a diet supplemented in SCD products indicates that changes in brain C16 desaturation were due to local SCD inhibition, rather than to changes in systemic fatty acids that reach the brain. Assessment of pharmacodynamic response onset and reversibility kinetics indicated that approximately 7 days of dosing were required to achieve maximal responses, which persisted for at least 2 days after cessation of dosing. YTX-7739 thus achieved sufficient concentrations in the brain to inhibit SCD and produce pharmacodynamic responses that were well-tolerated in rats and monkeys. These results provide a framework for evaluating YTX-7739 pharmacology clinically as a disease-modifying therapy to treat synucleinopathies.


Assuntos
Doença de Parkinson , Estearoil-CoA Dessaturase , Animais , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Metabolismo dos Lipídeos/fisiologia , Ratos , Estearoil-CoA Dessaturase/metabolismo , alfa-Sinucleína/metabolismo
5.
Methods Mol Biol ; 2049: 419-444, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602625

RESUMO

Neurodegenerative diseases (ND) represent a growing, global health crisis, one that lacks any disease-modifying therapeutic strategy. This critical need for new therapies must be met with an exhaustive approach to exploit all tools available. A yeast (Saccharomyces cerevisiae) model of α-synuclein toxicity-the protein causally linked to Parkinson's disease and other synucleinopathies-offers a powerful approach that takes advantage of the unique offerings of this system: tractable genetics, robust high-throughput screening strategies, unparalleled data repositories, powerful computational tools, and extensive evolutionary conservation of fundamental biological pathways. These attributes have enabled genetic and small molecule screens that have revealed toxic phenotypes and drug targets that translate directly to patient-derived iPSC neurons. Extending these insights, recent advances in genetic network analyses have generated the first "humanized" α-synuclein network, which has identified druggable proteins and led to validation of the toxic phenotypes in patient-derived cells. Unbiased phenotypic small molecule screens can identify compounds targeting critical proteins within α-synuclein networks. While identification of direct drug targets for phenotypic screen hits represents a bottleneck, high-throughput chemical genetic methods provide a means to uncover cellular targets and pathways for large numbers of compounds in parallel. Taken together, the yeast α-synuclein model and associated tools can reveal insights into underlying cellular pathologies, lead molecules and their cognate targets, and strategies to translate mechanisms of toxicity and cytoprotection into complex neuronal systems.


Assuntos
Saccharomyces cerevisiae/metabolismo , Sinucleinopatias/metabolismo , alfa-Sinucleína/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos , Redes Reguladoras de Genes , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Sinucleinopatias/tratamento farmacológico
6.
Cell Rep ; 25(10): 2742-2754.e31, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30517862

RESUMO

The lack of disease-modifying treatments for neurodegenerative disease stems in part from our rudimentary understanding of disease mechanisms and the paucity of targets for therapeutic intervention. Here we used an integrated discovery paradigm to identify a new therapeutic target for diseases caused by α-synuclein (α-syn), a small lipid-binding protein that misfolds and aggregates in Parkinson's disease and other disorders. Using unbiased phenotypic screening, we identified a series of compounds that were cytoprotective against α-syn-mediated toxicity by inhibiting the highly conserved enzyme stearoyl-CoA desaturase (SCD). Critically, reducing the levels of unsaturated membrane lipids by inhibiting SCD reduced α-syn toxicity in human induced pluripotent stem cell (iPSC) neuronal models. Taken together, these findings suggest that inhibition of fatty acid desaturation has potential as a therapeutic approach for the treatment of Parkinson's disease and other synucleinopathies.


Assuntos
Estearoil-CoA Dessaturase/antagonistas & inibidores , alfa-Sinucleína/toxicidade , Animais , Citoproteção/efeitos dos fármacos , Ácidos Graxos/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxidiazóis/química , Oxidiazóis/farmacologia , Agregados Proteicos , Ratos , Saccharomyces cerevisiae/efeitos dos fármacos , Estearoil-CoA Dessaturase/metabolismo , Triglicerídeos/metabolismo
7.
ACS Chem Neurosci ; 8(9): 2039-2055, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28628299

RESUMO

The lack of therapies for neurodegenerative diseases arises from our incomplete understanding of their underlying cellular toxicities and the limited number of predictive model systems. It is critical that we develop approaches to identify novel targets and lead compounds. Here, a phenotypic screen of yeast proteinopathy models identified dihydropyrimidine-thiones (DHPM-thiones) that selectively rescued the toxicity caused by ß-amyloid (Aß), the peptide implicated in Alzheimer's disease. Rescue of Aß toxicity by DHPM-thiones occurred through a metal-dependent mechanism of action. The bioactivity was distinct, however, from that of the 8-hydroxyquinoline clioquinol (CQ). These structurally dissimilar compounds strongly synergized at concentrations otherwise not competent to reduce toxicity. Cotreatment ameliorated Aß toxicity by reducing Aß levels and restoring functional vesicle trafficking. Notably, these low doses significantly reduced deleterious off-target effects caused by CQ on mitochondria at higher concentrations. Both single and combinatorial treatments also reduced death of neurons expressing Aß in a nematode, indicating that DHPM-thiones target a conserved protective mechanism. Furthermore, this conserved activity suggests that expression of the Aß peptide causes similar cellular pathologies from yeast to neurons. Our identification of a new cytoprotective scaffold that requires metal-binding underscores the critical role of metal phenomenology in mediating Aß toxicity. Additionally, our findings demonstrate the valuable potential of synergistic compounds to enhance on-target activities, while mitigating deleterious off-target effects. The identification and prosecution of synergistic compounds could prove useful for developing AD therapeutics where combination therapies may be required to antagonize diverse pathologies.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Clioquinol/farmacologia , Metais/metabolismo , Fármacos Neuroprotetores/farmacologia , Tionas/farmacologia , Peptídeos beta-Amiloides/toxicidade , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Clioquinol/toxicidade , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Íons/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Tionas/toxicidade , Leveduras
9.
Cell Syst ; 4(2): 157-170.e14, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28131822

RESUMO

Numerous genes and molecular pathways are implicated in neurodegenerative proteinopathies, but their inter-relationships are poorly understood. We systematically mapped molecular pathways underlying the toxicity of alpha-synuclein (α-syn), a protein central to Parkinson's disease. Genome-wide screens in yeast identified 332 genes that impact α-syn toxicity. To "humanize" this molecular network, we developed a computational method, TransposeNet. This integrates a Steiner prize-collecting approach with homology assignment through sequence, structure, and interaction topology. TransposeNet linked α-syn to multiple parkinsonism genes and druggable targets through perturbed protein trafficking and ER quality control as well as mRNA metabolism and translation. A calcium signaling hub linked these processes to perturbed mitochondrial quality control and function, metal ion transport, transcriptional regulation, and signal transduction. Parkinsonism gene interaction profiles spatially opposed in the network (ATP13A2/PARK9 and VPS35/PARK17) were highly distinct, and network relationships for specific genes (LRRK2/PARK8, ATXN2, and EIF4G1/PARK18) were confirmed in patient induced pluripotent stem cell (iPSC)-derived neurons. This cross-species platform connected diverse neurodegenerative genes to proteinopathy through specific mechanisms and may facilitate patient stratification for targeted therapy.


Assuntos
Doenças Neurodegenerativas/patologia , alfa-Sinucleína/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Ataxina-2/química , Ataxina-2/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Suscetibilidade a Doenças , Retículo Endoplasmático/metabolismo , Fator de Iniciação Eucariótico 4G/química , Fator de Iniciação Eucariótico 4G/metabolismo , Redes Reguladoras de Genes/genética , Genoma Fúngico , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Neurodegenerativas/genética , Neurônios/citologia , Neurônios/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/genética
10.
Nat Rev Neurol ; 11(6): 339-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25986505

RESUMO

In the absence of a single preventive or disease-modifying strategy, neurodegenerative diseases are becoming increasingly prevalent in our ageing population. The mechanisms underlying neurodegeneration are poorly understood, making the target-based drug screening strategies that are employed by the pharmaceutical industry fraught with difficulty. However, phenotypic screening in neurons and glia derived from patients is now conceivable through unprecedented developments in reprogramming, transdifferentiation, and genome editing. We outline progress in this nascent field, but also consider the formidable hurdles to identifying robust, disease-relevant and screenable cellular phenotypes in patient-derived cells. We illustrate how analysis in the simple baker's yeast cell Saccharaomyces cerevisiae is driving discovery in patient-derived neurons, and how approaches in this model organism can establish a paradigm to guide the development of stem cell-based phenotypic screens.


Assuntos
Testes Genéticos/métodos , Doenças Neurodegenerativas/genética , Predisposição Genética para Doença , Humanos , Modelos Genéticos , Modelos Neurológicos , Neuroglia , Neurônios , Saccharomyces cerevisiae/genética , Células-Tronco
11.
Mov Disord ; 29(10): 1231-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25131316

RESUMO

No disease-modifying therapies are available for synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple systems atrophy (MSA). The lack of therapies has been impeded by a paucity of validated drug targets and problematic cell-based model systems. New approaches are therefore needed to identify genes and compounds that directly target the underlying cellular pathologies elicited by the pathological protein, α-synuclein (α-syn). This small, lipid-binding protein impinges on evolutionarily conserved processes such as vesicle trafficking and mitochondrial function. For decades, the genetically tractable, single-cell eukaryote, budding yeast, has been used to study nearly all aspects of cell biology. More recently, yeast has revealed key insights into the underlying cellular pathologies caused by α-syn. The robust cellular toxicity caused by α-syn expression facilitates unbiased high-throughput small-molecule screening. Critically, one must validate the discoveries made in yeast in disease-relevant neuronal models. Here, we describe two recent reports that together establish yeast-to-human discovery platforms for synucleinopathies. In this exemplar, genes and small molecules identified in yeast were validated in patient-derived neurons that present the same cellular phenotypes initially discovered in yeast. On validation, we returned to yeast, where unparalleled genetic approaches facilitated the elucidation of a small molecule's mode of action. This approach enabled the identification and neuronal validation of a previously unknown "druggable" node that interfaces with the underlying, precipitating pathologies caused by α-syn. Such platforms can provide sorely needed leads and fresh ideas for disease-modifying therapy for these devastating diseases.


Assuntos
Transtornos dos Movimentos/patologia , Neurônios/metabolismo , Pesquisa Translacional Biomédica , Leveduras , alfa-Sinucleína/metabolismo , Animais , Humanos , Transtornos dos Movimentos/genética , Leveduras/genética , Leveduras/metabolismo , alfa-Sinucleína/genética
12.
Proc Natl Acad Sci U S A ; 111(11): 4013-8, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591589

RESUMO

Alzheimer's disease (AD) is a common, progressive neurodegenerative disorder without effective disease-modifying therapies. The accumulation of amyloid-ß peptide (Aß) is associated with AD. However, identifying new compounds that antagonize the underlying cellular pathologies caused by Aß has been hindered by a lack of cellular models amenable to high-throughput chemical screening. To address this gap, we use a robust and scalable yeast model of Aß toxicity where the Aß peptide transits through the secretory and endocytic compartments as it does in neurons. The pathogenic Aß 1-42 peptide forms more oligomers and is more toxic than Aß 1-40 and genome-wide genetic screens identified genes that are known risk factors for AD. Here, we report an unbiased screen of ∼140,000 compounds for rescue of Aß toxicity. Of ∼30 hits, several were 8-hydroxyquinolines (8-OHQs). Clioquinol (CQ), an 8-OHQ previously reported to reduce Aß burden, restore metal homeostasis, and improve cognition in mouse AD models, was also effective and rescued the toxicity of Aß secreted from glutamatergic neurons in Caenorhabditis elegans. In yeast, CQ dramatically reduced Aß peptide levels in a copper-dependent manner by increasing degradation, ultimately restoring endocytic function. This mirrored its effects on copper-dependent oligomer formation in vitro, which was also reversed by CQ. This unbiased screen indicates that copper-dependent Aß oligomer formation contributes to Aß toxicity within the secretory/endosomal pathways where it can be targeted with selective metal binding compounds. Establishing the ability of the Aß yeast model to identify disease-relevant compounds supports its further exploitation as a validated early discovery platform.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Clioquinol/farmacologia , Endocitose/fisiologia , Proteólise/efeitos dos fármacos , Peptídeos beta-Amiloides/toxicidade , Animais , Caenorhabditis elegans , Descoberta de Drogas/métodos , Endocitose/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Leveduras
13.
Science ; 342(6161): 983-7, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24158904

RESUMO

The induced pluripotent stem (iPS) cell field holds promise for in vitro disease modeling. However, identifying innate cellular pathologies, particularly for age-related neurodegenerative diseases, has been challenging. Here, we exploited mutation correction of iPS cells and conserved proteotoxic mechanisms from yeast to humans to discover and reverse phenotypic responses to α-synuclein (αsyn), a key protein involved in Parkinson's disease (PD). We generated cortical neurons from iPS cells of patients harboring αsyn mutations, who are at high risk of developing PD dementia. Genetic modifiers from unbiased screens in a yeast model of αsyn toxicity led to identification of early pathogenic phenotypes in patient neurons. These included nitrosative stress, accumulation of endoplasmic reticulum (ER)-associated degradation substrates, and ER stress. A small molecule identified in a yeast screen (NAB2), and the ubiquitin ligase Nedd4 it affects, reversed pathologic phenotypes in these neurons.


Assuntos
Benzimidazóis/farmacologia , Neurônios/efeitos dos fármacos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Benzimidazóis/química , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Neurogênese , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/genética , Ratos , alfa-Sinucleína/genética
14.
Science ; 342(6161): 979-83, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24158909

RESUMO

α-Synuclein (α-syn) is a small lipid-binding protein implicated in several neurodegenerative diseases, including Parkinson's disease, whose pathobiology is conserved from yeast to man. There are no therapies targeting these underlying cellular pathologies, or indeed those of any major neurodegenerative disease. Using unbiased phenotypic screens as an alternative to target-based approaches, we discovered an N-aryl benzimidazole (NAB) that strongly and selectively protected diverse cell types from α-syn toxicity. Three chemical genetic screens in wild-type yeast cells established that NAB promoted endosomal transport events dependent on the E3 ubiquitin ligase Rsp5/Nedd4. These same steps were perturbed by α-syn itself. Thus, NAB identifies a druggable node in the biology of α-syn that can correct multiple aspects of its underlying pathology, including dysfunctional endosomal and endoplasmic reticulum-to-Golgi vesicle trafficking.


Assuntos
Benzimidazóis/farmacologia , Citoproteção , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Doenças Neurodegenerativas/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitina-Proteína Ligases/genética , alfa-Sinucleína/metabolismo , Animais , Benzimidazóis/química , Caenorhabditis elegans , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Ubiquitina-Proteína Ligases Nedd4 , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Ratos , Saccharomyces cerevisiae/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
15.
Drug Discov Today Technol ; 10(1): e121-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24050240

RESUMO

Parkinson's disease (PD) is a devastating neurodegenerative disease that affects over one million patients in the US. Yet, no disease modifying drugs exist, only those that temporarily alleviate symptoms. Because of its poorly defined and highly complex disease etiology, it is essential to embrace unbiased and innovative approaches for identifying new chemical entities that target the underlying toxicities associated with PD. Traditional target-based drug discovery paradigm can suffer from a bias toward a small number of potential targets. Phenotypic screening of both genetic and pharmacological PD models offers an alternative approach to discover compounds that target the initiating causes and effectors of cellular toxicity. The relative paucity of reported phenotypic screens illustrates the intrinsic difficulty in establishing model systems that are both biologically meaningful and adaptable to high-throughput screening. Parallel advances in PD models and in vivo screening technologies will help create opportunities for identifying new therapeutic leads with unanticipated, breakthrough mechanisms of action.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Doença de Parkinson/tratamento farmacológico , Animais , Ensaios de Triagem em Larga Escala , Humanos , Fenótipo , Leveduras/genética , alfa-Sinucleína/genética
16.
J Biol Chem ; 287(6): 4107-20, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22147697

RESUMO

No current therapies target the underlying cellular pathologies of age-related neurodegenerative diseases. Model organisms provide a platform for discovering compounds that protect against the toxic, misfolded proteins that initiate these diseases. One such protein, TDP-43, is implicated in multiple neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. In yeast, TDP-43 expression is toxic, and genetic modifiers first discovered in yeast have proven to modulate TDP-43 toxicity in both neurons and humans. Here, we describe a phenotypic screen for small molecules that reverse TDP-43 toxicity in yeast. One group of hit compounds was 8-hydroxyquinolines (8-OHQ), a class of clinically relevant bioactive metal chelators related to clioquinol. Surprisingly, in otherwise wild-type yeast cells, different 8-OHQs had selectivity for rescuing the distinct toxicities caused by the expression of TDP-43, α-synuclein, or polyglutamine proteins. In fact, each 8-OHQ synergized with the other, clearly establishing that they function in different ways. Comparative growth and molecular analyses also revealed that 8-OHQs have distinct metal chelation and ionophore activities. The diverse bioactivity of 8-OHQs indicates that altering different aspects of metal homeostasis and/or metalloprotein activity elicits distinct protective mechanisms against several neurotoxic proteins. Indeed, phase II clinical trials of an 8-OHQ has produced encouraging results in modifying Alzheimer disease. Our unbiased identification of 8-OHQs in a yeast TDP-43 toxicity model suggests that tailoring 8-OHQ activity to a particular neurodegenerative disease may be a viable therapeutic strategy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Modelos Biológicos , Oxiquinolina/farmacologia , Ácido Poliglutâmico/metabolismo , Proteinopatias TDP-43/tratamento farmacológico , alfa-Sinucleína/metabolismo , Animais , Caenorhabditis elegans , Quelantes/farmacologia , Proteínas de Ligação a DNA/genética , Humanos , Ionóforos/farmacologia , Ácido Poliglutâmico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/metabolismo , alfa-Sinucleína/genética
17.
PLoS Biol ; 9(4): e1001052, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21541368

RESUMO

FUS/TLS is a nucleic acid binding protein that, when mutated, can cause a subset of familial amyotrophic lateral sclerosis (fALS). Although FUS/TLS is normally located predominantly in the nucleus, the pathogenic mutant forms of FUS/TLS traffic to, and form inclusions in, the cytoplasm of affected spinal motor neurons or glia. Here we report a yeast model of human FUS/TLS expression that recapitulates multiple salient features of the pathology of the disease-causing mutant proteins, including nuclear to cytoplasmic translocation, inclusion formation, and cytotoxicity. Protein domain analysis indicates that the carboxyl-terminus of FUS/TLS, where most of the ALS-associated mutations are clustered, is required but not sufficient for the toxicity of the protein. A genome-wide genetic screen using a yeast over-expression library identified five yeast DNA/RNA binding proteins, encoded by the yeast genes ECM32, NAM8, SBP1, SKO1, and VHR1, that rescue the toxicity of human FUS/TLS without changing its expression level, cytoplasmic translocation, or inclusion formation. Furthermore, hUPF1, a human homologue of ECM32, also rescues the toxicity of FUS/TLS in this model, validating the yeast model and implicating a possible insufficiency in RNA processing or the RNA quality control machinery in the mechanism of FUS/TLS mediated toxicity. Examination of the effect of FUS/TLS expression on the decay of selected mRNAs in yeast indicates that the nonsense-mediated decay pathway is probably not the major determinant of either toxicity or suppression.


Assuntos
DNA Helicases/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transativadores/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Núcleo Celular/genética , Citoplasma/genética , Citoplasma/metabolismo , DNA Helicases/genética , Regulação da Expressão Gênica , Mutação , Neurônios/metabolismo , RNA Helicases , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
18.
Dis Model Mech ; 3(3-4): 194-208, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20038714

RESUMO

alpha-Synuclein (alpha-syn) is a small lipid-binding protein involved in vesicle trafficking whose function is poorly characterized. It is of great interest to human biology and medicine because alpha-syn dysfunction is associated with several neurodegenerative disorders, including Parkinson's disease (PD). We previously created a yeast model of alpha-syn pathobiology, which established vesicle trafficking as a process that is particularly sensitive to alpha-syn expression. We also uncovered a core group of proteins with diverse activities related to alpha-syn toxicity that is conserved from yeast to mammalian neurons. Here, we report that a yeast strain expressing a somewhat higher level of alpha-syn also exhibits strong defects in mitochondrial function. Unlike our previous strain, genetic suppression of endoplasmic reticulum (ER)-to-Golgi trafficking alone does not suppress alpha-syn toxicity in this strain. In an effort to identify individual compounds that could simultaneously rescue these apparently disparate pathological effects of alpha-syn, we screened a library of 115,000 compounds. We identified a class of small molecules that reduced alpha-syn toxicity at micromolar concentrations in this higher toxicity strain. These compounds reduced the formation of alpha-syn foci, re-established ER-to-Golgi trafficking and ameliorated alpha-syn-mediated damage to mitochondria. They also corrected the toxicity of alpha-syn in nematode neurons and in primary rat neuronal midbrain cultures. Remarkably, the compounds also protected neurons against rotenone-induced toxicity, which has been used to model the mitochondrial defects associated with PD in humans. That single compounds are capable of rescuing the diverse toxicities of alpha-syn in yeast and neurons suggests that they are acting on deeply rooted biological processes that connect these toxicities and have been conserved for a billion years of eukaryotic evolution. Thus, it seems possible to develop novel therapeutic strategies to simultaneously target the multiple pathological features of PD.


Assuntos
Antiparkinsonianos/uso terapêutico , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Mitocôndrias/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Animais , Antiparkinsonianos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Avaliação Pré-Clínica de Medicamentos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/ultraestrutura , Perfilação da Expressão Gênica , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/ultraestrutura , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/patologia , Transporte Proteico/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Rotenona/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Relação Estrutura-Atividade , alfa-Sinucleína/toxicidade
19.
Mol Cell ; 30(6): 732-42, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18570876

RESUMO

The mechanisms of pre-mRNA splicing regulation are poorly understood. Here we dissect how the Saccharomyces cerevisiae ribosomal L30 protein blocks splicing of its pre-mRNA upon binding a kink-turn structure including the 5' splice site. We show that L30 binds the nascent RPL30 transcript without preventing recognition of the 5' splice site by U1 snRNP but blocking U2 snRNP association with the branch site. Interaction of the factors BBP and Mud2 with the intron, relevant for U2 snRNP recruitment, is not affected by L30. Furthermore, the functions of neither the DEAD-box protein Sub2 in the incipient spliceosome nor the U2 snRNP factor Cus2 on branch site recognition are required for L30 inhibition. These findings contrast with the effects caused by binding a heterologous protein to the same region, completely blocking intron recognition. Collectively, our data suggest that L30 represses a spliceosomal rearrangement required for U2 snRNP association with the transcript.


Assuntos
Galectina 3/farmacologia , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U2/química , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Íntrons , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , RNA Fúngico/química , RNA Fúngico/efeitos dos fármacos , RNA Fúngico/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
20.
Proc Natl Acad Sci U S A ; 104(50): 19948-53, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18077427

RESUMO

To characterize proteins associated with active transcription complexes, we purified RNA polymerase II (pol II) from Saccharomyces cerevisiae after fixing live cells with formaldehyde. The approach mimics ChIP and requires solubilizing cross-linked complexes with sonication. Pol II was affinity-purified, and associated proteins were identified by MS. Several classes of proteins depended on cross-linking, including Mediator, general transcription factors, elongation factors, ribonucleoprotein particle (RNP) proteins, and histones. A tagged RNP protein reciprocally purified pol II under identical cross-linking conditions, and the association between RNP proteins and pol II was largely RNase-sensitive. The data indicate that the cross-linked Pol II purification contains elongating pol II with associated nascent RNP. Consistent with this view, some elongation factors no longer associate with pol II after inactivation of transcription in the temperature-sensitive pol II mutant, rpb1-1. Taken together, our data suggest that the cross-linked pol II purification contains a mixed population of pol II, including initiating pol II and elongating pol II.


Assuntos
Proteínas Fúngicas/química , Subunidades Proteicas/química , RNA Polimerase II/química , Proteínas de Saccharomyces cerevisiae/química , Reagentes de Ligações Cruzadas , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , RNA Polimerase II/genética , RNA Polimerase II/isolamento & purificação , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/isolamento & purificação , Ribonucleoproteínas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Espectrometria de Massas em Tandem , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...